Логотип АС Медиа
 



Теория цвета

 

На рис. 12 указаны координаты синего и зеленого, соответствующие цветам на рис. 13. Расчеты выполнены на основе спектральных кривых, показанных на том же рисунке. Спектральные кривые отражают физический состав – «отпечаток пальца» этих цветов. По этим данным методами колориметрии можно вычислить цветовые координаты, коррелирующие со зрительным восприятием.

При использовании колориметрически управляемой репродукционной системы (системы управления цветом) для неопытного пользователя значительно проще описать и отредактировать данные LAB в координатах LCH. Поэтому сегодня информация хранится преимущественно как данные LAB, а редактирование осуществляется в пространстве LCH.

На рис. 14 в обобщенном виде представлено, каким образом осуществляется восприятие цвета человеком и каким образом с учетом зрительного восприятия строится физическая модель метрологически правильной оценки измерения и математического описания. Здесь же приведены ссылки на различные колориметрические системы.

В целом можно заметить, что идеальной равноконтрастной колориметрической системы на сегодняшний день не существует. Были предприняты многочисленные попытки показать основные преимущества CIELAB по сравнению с CIELUV, и наоборот. В связи с соответствующей «фактической» стандартизацией, возникшей на основе постановлений Международного консорциума по цвету (International Color Consortium – ICC), в настоящее время можно считать, что цветовое пространство CIELAB, по-видимому, является важнейшей системой колориметрической классификации.

Дальнейшая оптимизация визуальной равноконтрастности последовала с введением новой формулы цветового различия CIE94, которая основывается на параметрах LCH – варианта представления цветового пространства CIELAB.

Актуальным объектом исследований в области цвета является, прежде всего, включение эффектов цветовых различий (например, одновременного контраста) в систематическое описание цвета. В так называемых перцептуальных моделях описания цвета предпринимается попытка определить систематическую связь между значениями цветовых стимулов и цветовосприятием.

Среди особых форм классификации цвета следует упомянуть каталоги образцов цвета, такие, как Pantone, HKS или RAL, которые, однако, не служат для систематического описания всех цветов, различимых среднестатистическим наблюдателем. В этих случаях применяют лишь наборы отдельных красок и используют их для визуального сравнения цветов.

Например, некоторый цвет Pantone поставляется производителем на определенном запечатываемом материале в опорной таблице с тем, чтобы сделать возможным его воспроизведение красками устройства вывода. При этом вполне возможно, что для этого цвета Pantone нельзя будет подобрать пару в цветовом пространстве CMYK реального полиграфического синтеза. Наилучшее приближение обычно достигают методом проб и ошибок или с помощью системы управления цветом.

Для измерения цвета наиболее часто используют спектральные измерительные приборы (спектрофотометры) и приборы (колориметры) измерения цвета по трем каналам, моделирующим кривые сложения. С помощью денситометра (рис. 17) измерить цвет невозможно. Это можно объяснить на примере двух цветов – синего и зеленого, представленных на рис. 13. При денситометрических измерениях за светофильтром, который дает максимальное значение плотности, для обоих цветов они одинаковы: D=1,38. С другой стороны, измерения, основанные на использовании методов колориметрии, показывают цветовое различие на уровне ΔEab=39, которое реально отражает большую разницу между синим и зеленым цветами. На рис. 12 дополнительно изображены положения обоих цветов в цветовом круге CIELAB.

Цветовое тело CIELAB

Рис. 10
Цветовое тело CIELAB

Модель цветного зрения и система колориметрических измерений в соответствии с рис. 14 вобрали в себя оба описанных ранее способа измерения цвета: спектрофотометрию и методы, основанные на трехкомпонентных возбуждениях. Основное различие между методами заключается в том, что при спектрофотометрических измерениях спектр интенсивности цвета обрабатывается посредством цифровой фильтрации, моделирующей кривые сложения. При способе измерения с помощью фотоприемников для моделирования кривых сложения фильтрация осуществляется подбором спектральных характеристик оптических светофильтров.

В основу спектрофотометрических измерений положен принцип, в соответствии с которым каждый цвет можно описать посредством аддитивного смешения спектральных цветов. Видимый спектр (рис. 15) разделяют на малые интервалы, а интенсивность света измеряется отдельно в каждом интервале длин волн. Большинство спектрофотометров, применяемых на практике, работает в интервалах 10 или 20 нм, так что в видимой части спектра измеряются около 30 значений интенсивности света (видимый диапазон от 380 до 730 нм). При проведении специальных исследований с помощью уникальных технических систем можно осуществить измерения со значительно меньшим шагом (до 1 нм).

Цветовое пространство CIELAB

Рис. 11
Цветовое пространство (поперечное сечение цветового тела) CIELAB

Данные спектрофотометрических измерений затем, как правило, подлежат обработке с использованием методов математического моделирования трех рецепторов стандартного наблюдателя CIE при заданном источнике света и определенном угле зрения. Таким образом, например, 30-канальный сигнал преобразуется в соответствии с правилами колориметрического анализа с целью определения значений X, Y и Z в системе XYZ, а также для конвертирования цветовых координат при последующих переходах в другие колориметрические системы (рис. 14). Программное обеспечение спектрального колориметрического прибора обычно позволяет производить прямой перевод спектральных данных в данные, используемой в работе, колориметрической системы и учитывает при этом уравнения соответствующего стандарта (например, CIE).

 

<< Назад Вперед >>
В начало
На страницу: 1 2 3 4 5 6 7 8 9 10 11

 

С разрешения компании «Гейдельберг-СНГ»
© Heidelberger Druckmaschinen AG